Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 237
Filtrar
1.
Sci Rep ; 14(1): 8277, 2024 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-38594334

RESUMO

With both foodborne illness and food spoilage detrimentally impacting human health and the economy, there is growing interest in the development of in situ sensors that offer real-time monitoring of food quality within enclosed food packages. While oligonucleotide-based fluorescent sensors have illustrated significant promise, the development of such on-food sensors requires consideration towards sensing-relevant fluorescence properties of target food products-information that has not yet been reported. To address this need, comprehensive fluorescence profiles for various contamination-prone food products are established in this study across several wavelengths and timepoints. The intensity of these food backgrounds is further contextualized to biomolecule-mediated sensing using overlaid fluorescent oligonucleotide arrays, which offer perspective towards the viability of distinct wavelengths and fluorophores for in situ food monitoring. Results show that biosensing in the Cyanine3 range is optimal for all tested foods, with the Cyanine5 range offering comparable performance with meat products specifically. Moreover, recognizing that mass fabrication of on-food sensors requires rapid and simple deposition of sensing agents onto packaging substrates, RNA-cleaving fluorescent nucleic acid probes are successfully deposited via microcontact printing for the first time. Direct incorporation onto food packaging yields cost-effective sensors with performance comparable to ones produced using conventional deposition strategies.


Assuntos
Contaminação de Alimentos , Oligonucleotídeos , Humanos , Contaminação de Alimentos/análise , Corantes Fluorescentes , Qualidade dos Alimentos , Análise de Sequência com Séries de Oligonucleotídeos
2.
Angew Chem Int Ed Engl ; : e202400413, 2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38458987

RESUMO

High-precision viral detection at point of need with clinical samples plays a pivotal role in the diagnosis of infectious diseases and the control of a global pandemic. However, the complexity of clinical samples that often contain very low viral concentrations makes it a huge challenge to develop simple diagnostic devices that do not require any sample processing and yet are capable of meeting performance metrics such as very high sensitivity and specificity. Herein we describe a new single-pot and single-step electrochemical method that uses real-time kinetic profiling of the interaction between a high-affinity aptamer and an antigen on a viral surface. This method generates many data points per sample, which when combined with machine learning, can deliver highly accurate test results in a short testing time. We demonstrate this concept using both SARS-CoV-2 and Influenza A viruses as model viruses with specifically engineered high-affinity aptamers. Utilizing this technique to diagnose COVID-19 with 37 real human saliva samples results in a sensitivity and specificity of both 100 % (27 true negatives and 10 true positives, with 0 false negative and 0 false positive), which showcases the superb diagnostic precision of this method.

3.
Angew Chem Int Ed Engl ; 63(16): e202318665, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38253971

RESUMO

Systematic evolution of ligands by exponential enrichment (SELEX) has been used to discover thousands of aptamers since its development in 1990. Aptamers are short single-stranded oligonucleotides capable of binding to targets with high specificity and selectivity through structural recognition. While aptamers offer advantages over other molecular recognition elements such as their ease of production, smaller size, extended shelf-life, and lower immunogenicity, they have yet to show significant success in real-world applications. By analyzing the importance of structured library designs, reviewing different SELEX methodologies, and the effects of chemical modifications, we provide a comprehensive overview on the production of aptamers for applications in drug delivery systems, therapeutics, diagnostics, and molecular imaging.


Assuntos
Aptâmeros de Nucleotídeos , Aptâmeros de Nucleotídeos/química , Técnica de Seleção de Aptâmeros/métodos , Biblioteca Gênica , Ligantes , Sistemas de Liberação de Medicamentos
4.
Adv Mater ; 36(1): e2300875, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37085965

RESUMO

Despite extensive commercial and regulatory interventions, food spoilage and contamination continue to impose massive ramifications on human health and the global economy. Recognizing that such issues will be significantly eliminated by the accurate and timely monitoring of food quality markers, smart food sensors have garnered significant interest as platforms for both real-time, in-package food monitoring and on-site commercial testing. In both cases, the sensitivity, stability, and efficiency of the developed sensors are largely informed by underlying material design, driving focus toward the creation of advanced materials optimized for such applications. Herein, a comprehensive review of emerging intelligent materials and sensors developed in this space is provided, through the lens of three key food quality markers - biogenic amines, pH, and pathogenic microbes. Each sensing platform is presented with targeted consideration toward the contributions of the underlying metallic or polymeric substrate to the sensing mechanism and detection performance. Further, the real-world applicability of presented works is considered with respect to their capabilities, regulatory adherence, and commercial potential. Finally, a situational assessment of the current state of intelligent food monitoring technologies is provided, discussing material-centric strategies to address their existing limitations, regulatory concerns, and commercial considerations.


Assuntos
Embalagem de Alimentos , Qualidade dos Alimentos , Humanos , Aminas Biogênicas , Embalagem de Medicamentos
5.
Curr Biol ; 33(22): 4995-5002.e7, 2023 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-37852263

RESUMO

The study of southwest China is vital for understanding the dispersal and development of farming because of the coexistence of millet and rice in this region since the Neolithic period.1,2 However, the process of the Neolithic transition in southwest China is largely unknown, mainly due to the lack of ancient DNA from the Neolithic period. Here, we report genome-wide data from 11 human samples from the Gaoshan and Haimenkou sites with mixed farming of millet and rice dating to between 4,500 and 3,000 years before present in southwest China. The two ancient groups derived approximately 90% of their ancestry from the Neolithic Yellow River farmers, suggesting a demic diffusion of millet farming to southwest China. We inferred their remaining ancestry to be derived from a Hòabìnhian-related hunter-gatherer lineage. We did not detect rice farmer-related ancestry in the two ancient groups, which indicates that they likely adopted rice farming without genetic assimilation. We, however, observed rice farmer-related ancestry in the formation of some present-day Tibeto-Burman populations. Our results suggested the occurrence of both demic and cultural diffusion in the development of Neolithic mixed farming in some parts of southwest China.


Assuntos
Milhetes , Rios , Humanos , Milhetes/genética , Agricultura , Genoma , Fazendas , DNA Antigo , Migração Humana
6.
Angew Chem Int Ed Engl ; 62(51): e202315185, 2023 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-37903738

RESUMO

Here we report on an ultra-sensitive colorimetric sensing platform that takes advantage of both the strong amplification power of rolling circle amplification (RCA) and the high efficiency of a simple urease-mediated litmus test. The presence of a target triggers the RCA reaction, and urease-labelled DNA can hybridize to the biotinylated RCA products and be immobilized onto streptavidin-coated magnetic beads. The urease-laden beads are then used to hydrolyze urea, leading to an increase in pH that can be detected by a simple litmus test. We show this sensing platform can be easily integrated with aptamers for sensing diverse targets via the detection of human thrombin and platelet-derived growth factor (PDGF) utilizing structure-switching aptamers as well as SARS-CoV-2 in human saliva using a spike-binding trimeric DNA aptamer. Furthermore, we demonstrate that this colorimetric sensing platform can be integrated into a simple paper-based device for sensing applications.


Assuntos
Aptâmeros de Nucleotídeos , Técnicas Biossensoriais , Humanos , Urease , Colorimetria , DNA/metabolismo , Técnicas de Amplificação de Ácido Nucleico
7.
Angew Chem Int Ed Engl ; 62(42): e202310941, 2023 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-37648674

RESUMO

Engineering functional nucleic acids that are active under unusual conditions will not only reveal their hidden abilities but also lay the groundwork for pursuing them for unique applications. Although many DNAzymes have been derived to catalyze diverse chemical reactions in aqueous solutions, no prior study has been set up to purposely derive DNAzymes that require an organic solvent to function. Herein, we utilized in vitro selection to isolate RNA-cleaving DNAzymes from a random-sequence DNA pool that were "compelled" to accept 35 % dimethyl sulfoxide (DMSO) as a cosolvent, via counter selection in a purely aqueous solution followed by positive selection in the same solution containing 35 % DMSO. This experiment led to the discovery of a new DNAzyme that requires 35 % DMSO for its catalytic activity and exhibits drastically reduced activity without DMSO. This DNAzyme also requires divalent metal ions for catalysis, and its activity is enhanced by monovalent ions. A minimized, more efficient DNAzyme was also derived. This work demonstrates that highly functional, organic solvent-dependent DNAzymes can be isolated from random-sequence DNA libraries via forced in vitro selection, thus expanding the capability and potential utility of catalytic DNA.


Assuntos
DNA Catalítico , Solventes , Dimetil Sulfóxido , DNA Catalítico/genética , Íons , RNA
8.
Angew Chem Int Ed Engl ; 62(35): e202306272, 2023 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-37404195

RESUMO

Fusobacterium nucleatum has been correlated to many poor human conditions including oral infections, adverse pregnancies and cancer, and thus molecular tools capable of detecting this human pathogen can be used to develop diagnostic tests for them. Using a new selection method targeting thermally stable proteins without a counter-selection step, we derived an fluorogenic RNA-cleaving DNAzyme, named RFD-FN1, that can be activated by a thermally stable protein target that is unique to F. nucleatum subspecies. High thermal stability of protein targets is a very desirable attribute for DNAzyme-based biosensing directly with biological samples because nucleases found inherently in these samples can be heat-inactivated. We further demonstrate that RFD-FN1 can function as a fluorescent sensor in both human saliva and human stool samples. The discovery of RFD-FN1 paired with a highly thermal stable protein target presents opportunities for developing simpler diagnostic tests for this important pathogen.


Assuntos
DNA Catalítico , Fusobacterium nucleatum , Gravidez , Feminino , Humanos , DNA Catalítico/metabolismo , RNA/metabolismo
9.
Adv Mater ; 35(40): e2302641, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37358057

RESUMO

With food production shifting away from traditional farm-to-table approaches to efficient multistep supply chains, the incidence of food contamination has increased. Consequently, pathogen testing via inefficient culture-based methods has increased, despite its lack of real-time capabilities and need for centralized facilities. While in situ pathogen detection would address these limitations and enable individual product monitoring, accurate detection within unprocessed, packaged food products without user manipulation has proven elusive. Herein, "Lab-in-a-Package" is presented, a platform capable of sampling, concentrating, and detecting target pathogens within closed food packaging, without intervention. This system consists of a newly designed packaging tray and reagent-infused membrane that can be paired universally with diverse pathogen sensors. The inclined food packaging tray maximizes fluid localization onto the sensing interface, while the membrane acts as a reagent-immobilizing matrix and an antifouling barrier for the sensor. The platform is substantiated using a newly discovered Salmonella-responsive nucleic acid probe, which enables hands-free detection of 103 colony forming units (CFU) g-1 target pathogen in a packaged whole chicken. The platform remains effective when contamination is introduced with toolsand surfaces, ensuring widespread efficacy. Its real-world use for in situ detection is simulated using a handheld fluorescence scanner with smartphone connectivity.


Assuntos
Galinhas , Microbiologia de Alimentos , Animais , Salmonella , Contaminação de Alimentos/análise , Embalagem de Alimentos
10.
Small ; 19(41): e2303007, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37294164

RESUMO

clustered regularly interspaced short palindromic repeats (CRISPR)-Cas systems are increasingly used in biosensor development. However, directly translating recognition events for non-nucleic acid targets by CRISPR into effective measurable signals represents an important ongoing challenge. Herein, it is hypothesized and confirmed that CRISPR RNAs (crRNAs) in a circular topology efficiently render Cas12a incapable of both site-specific double-stranded DNA cutting and nonspecific single-stranded DNA trans cleavage. Importantly, it is shown that nucleic acid enzymes (NAzymes) with RNA-cleaving activity can linearize the circular crRNAs, activating CRISPR-Cas12a functions. Using ligand-responsive ribozymes and DNAzymes as molecular recognition elements, it is demonstrated that target-triggered linearization of circular crRNAs offers great versatility for biosensing. This strategy is termed as "NAzyme-Activated CRISPR-Cas12a with Circular CRISPR RNA (NA3C)." Use of NA3C for clinical evaluation of urinary tract infections using an Escherichia coli-responsive RNA-cleaving DNAzyme to test 40 patient urine samples, providing a diagnostic sensitivity of 100% and specificity of 90%, is further demonstrated.


Assuntos
Técnicas Biossensoriais , Ácidos Nucleicos , Humanos , Sistemas CRISPR-Cas/genética , RNA Circular , DNA de Cadeia Simples , RNA
11.
Chemistry ; 29(36): e202300240, 2023 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-37086393

RESUMO

Clostridium difficile frequently causes an infectious disease known as Clostridium difficile infection (CDI), and there is an urgent need for the development of more effective rapid diagnostic tests for CDI. Previously we have developed an RNA-cleaving fluorogenic DNAzyme (RFD) probe, named RFD-CD1, that is capable of detecting a specific strain of C. difficile but is too specific to recognize other pathogenic C. difficile strains. To overcome this issue, herein we report RFD-CD2, another RFD that is not only highly specific to C. difficile but also capable of recognizing diverse pathogenic C. difficile strains. Extensive sequence and structure characterization establishes a pseudoknot structure and a significantly minimized sequence for RFD-CD2. As a fluorescent sensor, RFD-CD2 can detect C. difficile at a concentration as low as 100 CFU/mL, thus making this DNAzyme an attractive molecular probe for rapid diagnosis of CDI caused by diverse strains of C. difficile.


Assuntos
Clostridioides difficile , Infecções por Clostridium , DNA Catalítico , Humanos , Clostridioides difficile/genética , Infecções por Clostridium/diagnóstico , Testes de Diagnóstico Rápido
12.
Adv Sci (Weinh) ; 10(19): e2207223, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37088731

RESUMO

There is a need for point-of-care bacterial sensing and identification technologies that are rapid and simple to operate. Technologies that do not rely on growth cultures, nucleic acid amplification, step-wise reagent addition, and complex sample processing are the key for meeting this need. Herein, multiple materials technologies are integrated for overcoming the obstacles in creating rapid and one-pot bacterial sensing platforms. Liquid-infused nanoelectrodes are developed for reducing nonspecific binding on the transducer surface; bacterium-specific RNA-cleaving DNAzymes are used for bacterial identification; and redox DNA barcodes embedded into DNAzymes are used for binding-induced electrochemical signal transduction. The resultant single-step and one-pot assay demonstrates a limit-of-detection of 102 CFU mL-1 , with high specificity in identifying Escherichia coli amongst other Gram positive and negative bacteria including Klebsiella pneumoniae, Staphylococcus aureus, and Bacillus subtilis. Additionally, this assay is evaluated for analyzing 31 clinically obtained urine samples, demonstrating a clinical sensitivity of 100% and specify of 100%. When challenging this assay with nine clinical blood cultures, E. coli-positive and E. coli-negative samples can be distinguished with a probability of p < 0.001.


Assuntos
DNA Catalítico , Escherichia coli , Escherichia coli/genética , Sensibilidade e Especificidade , Bactérias , DNA
13.
Angew Chem Int Ed Engl ; 62(20): e202300828, 2023 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-36932982

RESUMO

An Au-on-Au tip sensor is developed for the detection of Salmonella typhimurium (Salmonella), using a new synthetic nucleic acid probe (NAP) as a linker for the immobilization of a DNA-conjugated Au nanoparticle (AuNP) onto a DNA-attached thin Au layer inside a pipette tip. In the presence of Salmonella, RNase H2 from Salmonella (STH2) cleaves the NAP and the freed DNA-conjugated AuNP can be visually detected by a paper strip. This portable biosensor does not require any electronic, electrochemical or optical equipment. It delivers a detection limit of 3.2×103  CFU mL-1 for Salmonella in 1 h without cell-culturing or signal amplification and does not show cross-reactivity with several control bacteria. Further, the sensor reliably detects Salmonella spiked in food samples, such as ground beef and chicken, milk, and eggs. The sensor can be reused and is stable at ambient temperature, showing its potential as a point-of-need device for the prevention of food poisoning by Salmonella.


Assuntos
Técnicas Biossensoriais , Nanopartículas Metálicas , Animais , Bovinos , Colorimetria , DNA , Ouro , Limite de Detecção , Sondas de Ácido Nucleico , Salmonella typhimurium/genética , Microbiologia de Alimentos
14.
ACS Sens ; 8(4): 1558-1567, 2023 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-36926840

RESUMO

Wastewater analysis of pathogens, particularly SARS-CoV-2, is instrumental in tracking and monitoring infectious diseases in a population. This method can be used to generate early warnings regarding the onset of an infectious disease and predict the associated infection trends. Currently, wastewater analysis of SARS-CoV-2 is almost exclusively performed using polymerase chain reaction for the amplification-based detection of viral RNA at centralized laboratories. Despite the development of several biosensing technologies offering point-of-care solutions for analyzing SARS-CoV-2 in clinical samples, these remain elusive for wastewater analysis due to the low levels of the virus and the interference caused by the wastewater matrix. Herein, we integrate an aptamer-based electrochemical chip with a filtration, purification, and extraction (FPE) system for developing an alternate in-field solution for wastewater analysis. The sensing chip employs a dimeric aptamer, which is universally applicable to the wild-type, alpha, delta, and omicron variants of SARS-CoV-2. We demonstrate that the aptamer is stable in the wastewater matrix (diluted to 50%) and its binding affinity is not significantly impacted. The sensing chip demonstrates a limit of detection of 1000 copies/L (1 copy/mL), enabled by the amplification provided by the FPE system. This allows the integrated system to detect trace amounts of the virus in native wastewater and categorize the amount of contamination into trace (<10 copies/mL), medium (10-1000 copies/mL), or high (>1000 copies/mL) levels, providing a viable wastewater analysis solution for in-field use.


Assuntos
COVID-19 , Purificação da Água , Humanos , COVID-19/diagnóstico , SARS-CoV-2/genética , Águas Residuárias , Oligonucleotídeos
15.
Chemistry ; 29(27): e202300075, 2023 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-36790320

RESUMO

A new method for the detection of genomic RNA combines RNA cleavage by the 10-23 DNAzyme and use of the cleavage fragments as primers to initiate rolling circle amplification (RCA). 230 different 10-23 DNAzyme variants were screened to identify those that target accessible RNA sites within the highly structured RNA transcripts of SARS-CoV-2. A total of 28 DNAzymes were identified with >20 % cleavage, 5 with >40 % cleavage and one with >60 % in 10 min. The cleavage fragments from these reactions were then screened for coupling to an RCA reaction, leading to the identification of several cleavage fragments that could efficiently initiate RCA. Using a newly developed quasi-exponential RCA method with a detection limit of 500 aM of RNA, 14 RT-PCR positive and 15 RT-PCR negative patient saliva samples were evaluated for SARS-CoV-2 genomic RNA, achieving a clinical sensitivity of 86 % and specificity of 100 % for detection of the virus in <2.5 h.


Assuntos
Técnicas Biossensoriais , COVID-19 , DNA Catalítico , Humanos , DNA Catalítico/metabolismo , RNA , SARS-CoV-2/genética , SARS-CoV-2/metabolismo , Clivagem do RNA , COVID-19/diagnóstico , Técnicas de Amplificação de Ácido Nucleico/métodos , Genômica , Técnicas Biossensoriais/métodos
16.
Biosens Bioelectron ; 224: 114983, 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36640547

RESUMO

DNAzyme-based electrochemical biosensors provide exceptional analytical sensitivity and high target recognition specificity for disease diagnosis. This review provides a critical perspective on the fundamental and applied impact of incorporating DNAzymes in the field of electrochemical biosensing. Specifically, we highlight recent advances in creating DNAzyme-based electrochemical biosensors for diagnosing infectious diseases, cancer and regulatory diseases. We also develop an understanding of challenges around translating the research in the field of DNAzyme-based electrochemical biosensors from labs to clinics, followed by a discussion on different strategies that can be applied to enhance the performance of the currently existing technologies to create truly point-of-care electrochemical DNAzyme biosensors.


Assuntos
Técnicas Biossensoriais , DNA Catalítico , Sistemas Automatizados de Assistência Junto ao Leito , Técnicas Eletroquímicas
17.
J Am Chem Soc ; 145(4): 2630-2637, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36657012

RESUMO

Functional nucleic acids (FNAs), such as DNAzymes and DNA aptamers, can be engineered into circular forms for improved performance. Circular FNAs are promising candidates for bioanalytical and biomedical applications due to their intriguing properties of enhanced biological stability and compatibility with rolling circle amplification. They are typically made from linear single-stranded (ss) DNA molecules via ligase-mediated ligation. However, it remains a great challenge to synthesize circular ssDNA molecules in high yield due to inherent side reactions where two or more of the same ssDNA molecules are ligated. Herein, we present a strategy to overcome this issue by first using in vitro selection to search from a random-sequence DNA library a ligatable DNA aptamer that binds a DNA ligase and then by engineering this aptamer into a general-purpose templating DNA scaffold to guide the ligase to execute selective intramolecular circularization. We demonstrate the broad utility of this approach via the creation of several species of circular DNA molecules, including a circular DNAzyme sensor for a bacterium and a circular DNA aptamer sensor for a protein target with excellent detection sensitivity and specificity.


Assuntos
Aptâmeros de Nucleotídeos , Técnicas Biossensoriais , DNA Catalítico , DNA Catalítico/metabolismo , Aptâmeros de Nucleotídeos/química , Ligases/metabolismo , Técnicas de Amplificação de Ácido Nucleico , DNA/química , DNA Circular , DNA de Cadeia Simples
18.
Opt Express ; 30(26): 47026-47037, 2022 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-36558640

RESUMO

Cigarette smoke is one of the six major pollution sources in the room air. It contains large number of particles with size less than 10 nm. There exist carbon dots (CDs) in cigarette smoke which have strong fluorescence and with good bio-compatibility and low toxicity. CDs in cigarette smoke can be applied in bio-imaging which has great potential applications in the integration of cancer diagnosis and treatment. In this paper, CDs were extracted from cigarette smoke. Then, sodium borohydride was added to CDs aqueous solution for reduction and the reduced CDs (R-CDs) were used for biological cell imaging. The results indicate that the CDs with the particle size <10 nm in cigarette smoke are self-assembled by the polymerizated polycyclic aromatic hydrocarbons (PAHs) and ammonium nitrite which are disk nano-structure composed of sp2/sp3 carbon and oxygen/nitrogen groups or polymers. Sodium borohydride can reduce the carbonyl group on the surface of CDs to hydroxyl group and increase the ratio of the Na 1s ratio of the CDs from 1.86 to 7.42. The CDs can emit blue fluorescence under ultraviolet irradiation. After reduction, the R-CDS have the intensity of fluorescence 7.2 times than before and the fluorescence quantum yield increase from 6.13% to 8.86%. The photoluminescence (PL) wavelength of R-CDS have red-shift of 7 nm which was due to the increasing of Na element ratio. The onion epidermal cells labeled with R-CDs show that the CDs could pass through the cell wall into the cell and reach the nucleus. The cell wall and the nucleus could be clearly visualized. CDs also shows low toxicity to human bronchial epithelial cells (BEAS-2B) with good biological activity. The obtained results indicate that the CDs and R-CDs have good fluorescent property which could be used as bio-imaging agent.


Assuntos
Fumar Cigarros , Pontos Quânticos , Humanos , Carbono , Boroidretos , Corantes Fluorescentes/química , Íons , Pontos Quânticos/química
19.
J Am Chem Soc ; 144(51): 23465-23473, 2022 12 28.
Artigo em Inglês | MEDLINE | ID: mdl-36520671

RESUMO

Our previously discovered monomeric aptamer for SARS-CoV-2 (MSA52) possesses a universal affinity for COVID-19 spike protein variants but is ultimately limited by its ability to bind only one subunit of the spike protein. The symmetrical shape of the homotrimeric SARS-CoV-2 spike protein presents the opportunity to create a matching homotrimeric molecular recognition element that is perfectly complementary to its structural scaffold, causing enhanced binding affinity. Here, we describe a branched homotrimeric aptamer with three-fold rotational symmetry, named TMSA52, that not only possesses excellent binding affinity but is also capable of binding several SARS-CoV-2 spike protein variants with picomolar affinity, as well as pseudotyped lentiviruses expressing SARS-CoV-2 spike protein variants with femtomolar affinity. Using Pd-Ir nanocubes as nanozymes in an enzyme-linked aptamer binding assay (ELABA), TMSA52 was capable of sensitively detecting diverse pseudotyped lentiviruses in pooled human saliva with a limit of detection as low as 6.3 × 103 copies/mL. The ELABA was also used to test 50 SARS-CoV-2-positive and 60 SARS-CoV-2-negative patient saliva samples, providing sensitivity and specificity values of 84.0 and 98.3%, respectively, thus highlighting the potential of TMSA52 for the development of future rapid tests.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , COVID-19/diagnóstico , Glicoproteína da Espícula de Coronavírus , Bioensaio , Oligonucleotídeos
20.
Chem Soc Rev ; 51(21): 9009-9067, 2022 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-36259976

RESUMO

Functional nucleic acids (FNAs), including DNA aptamers and DNAzymes, are finding increasing use as molecular recognition elements for point-of-care (POC) assays and sensors. An ongoing challenge in the development of FNA-based POC sensors is the ability to achieve detection of low levels of analyte without compromising assay time and ease of use. Rolling circle amplification (RCA) is a leading nucleic acid (NA) isothermal amplification method which can be coupled with FNAs for the ultrasensitive detection of non-NA targets. Herein we examine the key considerations required when designing FNA-coupled biosensors utilizing RCA. Specifically, we describe methods for using FNAs as inputs to regulate RCA, various modes of RCA amplification, and methods to detect the output of the RCA reaction, along with how these can be combined to allow detection of non-NA targets. Recent progress on development of portable optical and electrochemical POC devices that incorporate RCA is then described, followed by a summary of key challenges and opportunities in the field.


Assuntos
Aptâmeros de Nucleotídeos , Técnicas Biossensoriais , DNA Catalítico , Técnicas Biossensoriais/métodos , Técnicas de Amplificação de Ácido Nucleico/métodos , Aptâmeros de Nucleotídeos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...